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Abstract

We propose a new approach for semi-automatic segmentation of the carotid bifurcation as part of the
Carotid Lumen Segmentation and Stenosis Grading Challenge MICCAI’2009 workshop. Three initial
points are provided as input, belonging to the Common, the External and the Internal Carotid Arteries.
Our algorithm is divided into two main steps: first, two minimal cost paths are tracked between the
CCA and both the ECA and the ICA. The cost functions are based on a multiscale vesselness response.
Second, after detecting the junction position and cutting or extending the paths based on the requested
lengths, a level set segmentation is initialized as a thin tube around the computed paths and evolves
until reaching the vessel wall or a maximal evolution time. Results on training and testing datasets are
presented and compared to the manual segmentation by three observers, based on a ground truth and
using four quality measures.
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1 Introduction

In the context of the Carotid Lumen Segmentation and Stenosis Grading Challenge (CLS), forming part of
the 3rd MICCAI Worshop in the series “3D Segmentation in the Clinic: a Grand Challenge”, we propose
a method for semi-automatic segmentation of the carotid bifurcation from Computed Tomography Angiog-
raphy (CTA) datasets. The region to be segmented consists in parts of the Common Carotid Artery (CCA),
the Internal Carotid Artery (ICA) and the External Carotid Artery (ECA), as defined by the challenge rules.
The semi-automatic method challenge consists in using three points as input, each point located in one of
the main arteries. Figure 1 depicts a volume rendering of datasets 000 and 004 1. The left column renders
a volume of interest, and right column renders only the voxels belonging or close to the given segmentation
ground truth. From these two images, we can understand most of the difficulties that can arise during the
segmentation process:

• the presence of strong calcifications both in the ECA and the ICA,

• the presence of ramifications in the ECA,

• other unwanted vessels that come close to the main carotid arteries,

• the possibility of having a full obstruction of the ICA,

• a strong variation of vessel intensities between datasets and within the same dataset.

Figure 1: Volume Rendering of regions of interest from two datasets. From left to right, for dataset 000:
volume rendering of the entire region of interest and of the voxels close to the given ground truth, for dataset
004: the same representation.

Based on the three initial points given within the semi-automatic challenge, we propose to use the strategy
illustrated in figure 2 to segment the carotid bifurcation. This strategy is composed of the following main
steps:

1. Compute the paths between the point in the CCA and the two other points.

1Rendered with ParaView http://www.paraview.org/ .
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Figure 2: Main components of the proposed segmentation method.

2. Estimate the position of the junction, identify the two paths and adjust their length.

3. Segment the vessels starting from a thin tube around the paths and using a level set framework.

We details each step in the following sections, then we present and discuss the results obtained on the
different datasets and we conclude.

2 Paths and Junction Computation

To start with, a region of interest is created based on the three given points, and using a margin of 30mm in
X and Y, a bottom margin of 20mm in Z and a top margin of 40mm in Z direction. Creating the region of
interest allows reducing the overall computation time before the detection of the junction location. Within
this ROI, a speed image is created by combining the results of a multiscale vesselness measure and prob-
ability image based on the image intensity local statistics. Based on the speed image, a path for between
the CCA and each of the other two arteries is created, allowing to identify a junction position and to which
artery each path belongs to. The length of each path is either cut or extended to fulfill the requirements of
the challenge. The different algorithms are described below.

2.1 Multiscale Vesselness Measure

A vesselness response is calculated based on [6] and similarly to [3]. The response is calculated using the
input ROI. In addition, the algorithm has the following inputs: input image, minimal radius, maximal radius,
number of radii and mask image.

Mask image

A mask image is created to reduce the total computation cost of the algorithm, the mask consist in a selection
of voxels within the intensity range of vessels, this range has been set to [1150,1600] for all the datasets.

Local structure orientation

For describing the local structure orientation, we use the same second order descriptor as presented in [2, 4,
5]. It consists in a combination of the outer product of the gradient and the squared Hessian matrix, weighted
by a coefficient β, as defined by (1). The derivatives are obtained by convolution with the corresponding
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2.1 Multiscale Vesselness Measure 4

derivatives of a Gaussian kernel of standard deviation σ, and they are normalized using a multiplication by
a factor σn, where n is the order of derivation, thus ensuring the scale invariance property which allows
comparing responses obtained from different scales. This new operator will be denoted as Dσ(I) and defines
a local matrix at each voxel of the image, which is symmetric, real, and positive-semi definite,

D(I) = ∇I⊗∇I +βH2(I), (1)

Dσ(I) = σ2∇σI⊗∇σI +βσ4H2
σ(I). (2)

At each voxel, we denote~v1,~v2 and~v3 the eigenvectors of Dσ(I) with the respective eigenvalues λ1 ≥ λ2 ≥
λ3. For the smallest eigenvalue, the eigenvector~v3 gives the local direction of minimal change, which, in
the case of vessels, corresponds to the local orientation of the vessel axis. In all the experiments, we set the
value of β to 1.

Circle boundary integration

For each scale σ, a response is computed as a combination of the boundary information along a circle in the
estimated cross-section plane of the vessel. The circle Cx,~v1,~v2,τσ is defined by its center x, an estimate of the
cross-section orientation given by the eigenvectors~v1 and~v2, and a radius proportional of the current scale
τσ.

The boundary information, denoted B, is obtained with the scalar product of the gradient and the radial
direction. An initial version of this filter consisted in averaging the boundary values around the computed
circle:

Mσ(x) = meany∈CB(y) =
1
N

N−1

∑
i=0

−σ∇σI (x+ τσ~vα) .~vα, (3)

with α = 2πi/N, and~vα = cos(α)~v1 + sin(α)~v2, where N is the number of points along the circle. In all
the experiments, the value τ is set to

√
3, to maximize the selected response at the center in the case of a

cylindrical circular vessel with Gaussian cross-section [6], and the number of points N around the integrating
circle is set to 20.

In order to improve both the selectivity of the filter and its robustness to outliers, we introduce the modifi-
cations:

1. we only keep the minimum of the boundary information in opposite directions,

2. we select the average over 80% of the highest obtained values.

The first modification allows reducing the response obtained at standard edges, where high gradients are
present in only one side of the circle. The second modification prevents strong reduction of the vesselness
response in the presence of junctions or similar intensity nearby structures.

Multiscale integration

We compute the response function Mσ for a range of scales that are discretized using a logarithmic scale in
order to have more accuracy for lower scales. The minimal and maximal radius of the vessels to extract are
set to 0.2 and 3.5mm respectively. The corresponding scales are calculated based on the relation between
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2.2 Probability and Speed Image Calculation 5

the radius r of the cylindrical circular model and the scale σ(r) at which it gives a maximal response at the
center [6]:

σ(r) =
√

2
2

r (4)

We have set the number of scales to 7 from 0.5mm to 7mm for all experiments.

Two images are obtained as output of the multiscale vesselness filter:

1. The maximal response obtained across the different scales, denoted Mrep = maxσ Mσ.

2. The image of the local maxima, denoted Mlmax, both in the spatial and the scale dimensions, of the
multiscale response. A voxel is defined to be a local maxima of the multiscale response if and only
if: - there exists a scale for which it is a local maximum of the response in the estimated plane of the
cross-section, and - its response values at the previous and the next scales are lower.

The image of local maxima is an estimate of the vessel centerlines and will be used in the subsequent
process to defined the cost associated to crossing a voxel (or equivalently the evolution speed), in order to
find the centerline paths of the arteries. Figure 3 depicts the two output images obtained for datasets 000
and 004, where the rendering is obtained by Maximal Intensity Projection with fog effect to attenuate object
depending on their distance to the camera 2.

Figure 3: Maximum Intensity Projection (MIP) rendering of vesselness response and the corresponding
local maxima from two datasets. From left to right, for dataset 000: MIP with OpenGL fog effect for the
vesselness response and the local maxima images, for dataset 004: the same representation.

2.2 Probability and Speed Image Calculation

Since the regions of interest can contain many tubular structures that do not necessarily belong to the main
carotid arteries, and since the vesselness response is sensitive to the presence of calcifications, we use an
additional image based on local intensity statistics to create the speed image used for minimal cost path
computation. Two images of local mean intensity, denoted Ilm and of local intensity standard deviation,
denoted Isdm, using neighborhoods of size 3×3×3, are created. Based on these two image, a new image is
created, denoted as probability image, using the expression:

Ip = f (Ilm)∗g(Isdm), (5)

2Rendered with AMILab http://amilab.sourceforge.net/ .
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where f is a smoothed version of an function which equals 1 within the intensity range [1050,1600] and 0

elsewhere, and g is defined by the expression g(x) = e−
x2

2.302 .

The speed image is then defined by

Is = max(Mlmax,Mrep ∗ Ip). (6)

This speed image is the maximum between the image of local maxima of the vesselness response, and
the multiscale response multiplied by the probability image. The idea behind this expression is to prevent
the centerline path to cross vessel contours and to find a path within another vessel or another structure.
Thus the expression Mrep ∗ Ip will lower very fast close the vessel contours because of their high intensity
local standard deviations. However, since small vessels could have a high local standard deviation almost
everywhere, the possibility the possibility to cross them is preserved by the introduction of the local maxima
of the vesselness response Mlmax.

2.3 Minimal-cost path, junction detection, and length checking

Two paths between the CCA and both the ECA and the ICA are automatically extracted maximizing the
probability of being within and at the center of the searched vessel. As in [1], a geodesic distance transform is
computed by the Fast Marching algorithm, starting from the end point up to the initial point. The extremities
of both path are inputs of the semi-automatic challenge, and the speed function is set as the image Is defined
by equation 6, plus a small value of 0.02. The paths are created by backtracking the front evolution using
the local intensity gradient of the geodesic distance. Once both paths have been detected, the junction point
is defined as the point where the distance between the two paths becomes higher that 1mm, starting from
their common extremity in the CCA. At the junction point, the path with higher value in Y axis is selected
as the path to the ICA, and the other path is selected as the one to the ECA. This simple criterion has worked
for all the datasets for which the junction has been successfully detected . Once the junction and both paths
have been detected and identified, the path are either cut or extended depending on their actual distances to
the detected junction and on the length requirements of the challenge. The extension of the paths is obtained
by running another minimal cost path from the extremity to the targeted plane in Z coordinates.

3 Level Set Evolution

For each of the two paths detected previously, a level set segmentation method is used to evolve an active
contour from the path to the vessel walls. The cylindrical tube around each path is create with a radius of
0.5mm. The level set evolution algorithm that we use is based on a previous publication [7]. The evolution
force is composed of three main terms: a expansion term, an advection term and a smoothing term. As
proposed by [8], the smoothing term is based on the minimal curvature of the active surface to better preserve
small tubular structures. The advection term is based on the zero-crossing of the second order derivatives
of the image intensity, and the expansion term is based on the following function of the image intensity:

e−
(

I(x)−λw
2 σw

)2

− τ, where λw is an estimated mean intensity value of the vessel, σw is an estimated standard
deviation of the vessel, and τ is a threshold that allows to shrink the surface (negative force), when the
intensity of the current voxel is too far from the expected intensity. λw and σw are set as the mean and the
standard deviation of the vessel intensity inside the initial tube, and τ is set to e−2 ≈ 0.135 in all experiments.
Figure 4 depicts surface rendering of the results obtained for datasets 000 and 004, together with isosurfaces
of the corresponding ground-truths.
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Figure 4: 3D representation of the initial points, the obtained paths, junctions, results and the given ground
truth on datasets 000 (left) and 004 (right). The isosurfaces of the ground truth in red and the obtained level
set results are displayed with transparency.

4 Results

Summary of the results obtained on the 31 testing datasets are given in tables 1 and 2. Even though the
accuracy of the contours of the proposed method does not reach the expert precision, the method has been
successful in detecting the paths and the junctions in most of the datasets. More difficulties have been
encountered with the datasets from Hadassah and Louis Pradel, where in some cases, due to the importance
of the calcifications or to the obstruction of the internal carotid artery, the junction has not been correctly
detected and the full segmentation gives poor results since it relies strongly on the plane position of the
junction to cut or expand the paths. Another important missing feature of the proposed method is to cut
the unwanted branches, mainly appearing in the ECA, which would probably increase the quality of all the
scores and would reduce the difference between the obtained results and the ones obtained by the experts.
However, since the experts contribute to the generated ground truth, one can expect that their quantitative
results are generally better than the one of the proposed technique.

Table 1: Summary lumen
Measure % / mm rank

min. max. avg. min. max. avg.
L dice 35.0% 95.6% 89.0% 1 4 3.68
L msd 0.09mm 3.14mm 0.39mm 4 4 4.00

L rmssd 0.12mm 4.51mm 0.64mm 4 4 4.00
L max 0.33mm 12.20mm 2.66mm 1 4 3.77

Total (lumen) 1 4 3.86

Table 2: Averages lumen
Team Total dice msd rmssd max Total
name success % rank mm rank mm rank mm rank rank

GIMET 31 89.0 3.7 0.39 4.0 0.64 4.0 2.66 3.8 3.9
ObserverA 31 95.4 1.5 0.10 1.5 0.13 1.6 0.56 2.0 1.6
ObserverB 31 94.8 2.5 0.11 2.4 0.15 2.3 0.59 1.8 2.2
ObserverC 31 94.7 2.4 0.11 2.1 0.15 2.1 0.71 2.5 2.3

5 Conclusion

A method has been described to segment the carotid bifurcation from Computed Tomography Angiography.
The method is semi-automatic and requires three initial points, one in each of the main artery, to detect
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first the centerline paths and the junction point between the external and the internal carotid arteries. In
the proposed algorithm, the centerline paths are computed based on a multiscale vesselness response, and
the contours are obtained by evolving a level set active contour from the centerline up to the vessel walls.
The complete segmentation process presented in this paper is available within the opensource software
AMILab at http://amilab.sourceforge.net/ , and the corresponding scripts will be available in the
next release. As part of the MICCAI 2009 Challenge on Lumen Carotid Segmentation, experiments have
been carried out on 15 training datasets and 31 testing datasets, where quantitative results are obtained for
four different quality measures based on a ground truth obtained from three different experts. Results show
that the proposed method behaves reasonably well, but without reaching the accuracy and the robustness of
the experts. Future work will consists in improving the proposed method, by dealing better with branches
and calcifications, and allowing a more adaptive expansion force that guides the level set active contour
framework.
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